
UDC 004.627

Serhіy USTENKО, Serhіy LUKYАNСHІKОV
Mykolaiv
ustenkо.s.а@gmаіl.соm, lsd57@ukr.net

АРРLІСАTІОN DІСTІОNАRY СОMРRESSІОN METHОD
FОR СОMРRESSІОN ОF АUDІО DАTА

WІTH АDJUSTАBLE LОSS

The wоrk іs dedісаted tо the develорment оf аudіо dаtа соmрressіоn methоd wіth аdjustаble
lоsses usіng рseudо-dіfferenсe аnаlоgs usіng dісtіоnаrіes

Keywоrds: dісtіоnаry, аudіо sаmрles, the meсhаnіsm оf соmрressіоn, соmрressіоn аlgоrіthm,
lоssy соmрressіоn.

By the moment, lossy compression methods are mostly used for effective audio data
compression, which ones can be classified as psycho-acoustic methods (MРEG Аudіо, ОGG
Vоrbіs, ААС), and other ones based on fractals, wavelets and stochasic differential equations [1].

On the other hand, dictionary-based methods of lossless compression, like Lempel-Ziv method
[2] and its modifications [3-6] give only minor compression, and sometimes compression cannot be
reached. Some attempts to develop dictionary-based method which could solve this problem were
presented in [7], where projectional compression method had been proposed. Although, after
practical experiments of using this method for compressing audio data, it appeared that it gives
almost the same compression rates as Lempel-Ziv method, also being much more resource-
consumable.

For reaching higher compresion rates in such applications it is possible to use lossy dictionary-
based compression methods. The goal of current presentation is to demonstrate method which could
allow to do this.

Let's call compression method being presented here as method of differential pseudo-analogs.
During compression process, audio information is accepted as a stream of amplitude values of the
sound signal (audio samples). Coder contains a dictionary buffer having capacity of L audio
samples. At the start of compression process the dictionary is being filled by audio samples from
the input stream. Coder also contains special input buffer (audio samples cache) having capacity of
l audio samples (Ll <<) which is being constantly filled up from input stream. After filling up
audio samples cache algorithm tries to find differential pseudo-analogs of audio samples cache
contents inside the dictionary.

Let's assume differential pseudo-analog (DPA) having length p a block of lp  audio
samples from the dictionary which matches the following condition:
   δrsq ij+i  , p=i 1, , (1)

where j+iq – audio samples from the dictionary; j – DPA position inside the dictionary; is –

appropriate audio samples from the cache; r – average DPA difference; δ – given acceptable error
of audio sample value.

Average DPA difference is an arithmetic mean between values of appropriate audio samples
from DPA and the cache:

 
p

=i
ij+i sq

p
=r

1

1 .

Thus, DPA audio sample values differs from corresponding values of cache audio samples by
the difference r in range of given acceptable error δ . If 0=r , then such DPA is called simple
pseudo-analog (SPA).

Compression mechanism sense is that once DPA has found, only its position j inside the
dictionary, length p and difference r is saved instead of corresponding part of the cache. Thus,
part of the samples cache is replaced with corresponding representation from inside the dictionalry.
In this case if 0>δ , then it's obvious that lossy compression is being performed.

There are 3 differrent situations possible durig compression progress:
– DPA has been found (0r) – need to save j , p and r ;
– SPA has been found (0=r) – need to save only j and p ;
– neither of DPA/SPA have been found – need to exclude first audio sample from the cache

and save it as is, without any compression.
Thus, results of the compression will have one of the following types: DPA, SPA or the separate

audio sample from the cache. In order to save compression result the following bit structures are
proposed:

– DPA:
1 1 j p r

– SPA:
1 0 j p

– A separate audio sample from the cache:
0 1s

The left-most bit of those structures allows to distinguish pseudo-analog from the audio sample
from cache. The next bit allows to distinguish DPA from SPA and determine if there is a need to
read the difference r at the end.

Structure field sizes for j and p are calculated using the following:
)(log)(2 Lceiljsize  ,
)(log)(2 lceilpsize  ,

where ceil – is an operation of getting the closest larger integer; L , l – number of audio samples
in the dictionary and cache respectively.

Sizes of fileds r and 1s are the same and equal to the bit size b of audiostream samples. If
value of r is impossible to place in b bits:
 b>r)ceil(2log , (2)
then such DPA should be discarded.

Let's state an algorithm of compressing the audio samples stream as a set of steps. At the start of
the compression process the size L of the dictionary, size l of audio samples cache and acceptable
audio samples value error δ are being preset. Algorithm accepts the stream of audio samples and
generates the stream of compressd results as an output (archive).

Compression algorithm.
Step 1. Fill the dictionary with L audiosamples from the input stream and save

initial dictionary state in the archive.
Step 2. Set current fill w of the audiosamples cache: 0=w (cache is empty).
Step 3. Refill audiosamples cache from the input stream updating current fill w of

the cache.
Step 4. According to the bit structure for saving DPA, calculate minimum number

z of audiosamples in DPA which will give at least minimal comporession:





 12 +

b
size(p)+size(j)+ceil=z .

Step 5. According to the condition (1) for p from w to z search DPA having
length p in entire contents of the dictionary, discarding DPA matching
condition (2). Amon all found DPAs select the one matching

  min
1


p

=i
ij+i sq ,

where j+iq – audiosamples from the dictionary; j – DPA position inside

the dictionary; is – corresponding audiosamples from the cache.
Step 6. If DPA has been found during Step 5 then:

– store the values of j , p and the difference r ;
– if 0r , then save DPA to the archive using appropriate bit structure;
else – save DPA using SPA structure;
– push DPA found to the dictionary (which should be organized as FIFO
buffer).
If DPA has not been found then:
– assume DPA length as 1=p ;
– save only first sample from the cache to the archive using appropriate
bit structure;
– remove this audiosample from the cache and push it to the dictionary.

Step 7. Remove processed part of the cache having length p and refresh the cache
fill: pw=w  .

Step 8. If the input stream end isn't reached, go to Step 3.
Step 9. End.

Restoring audio samples from the archive is much more trivial task. All you need is just read the
initial state of the dictionary from the archive, and then read coded compression results and decode
them performing following actions:

– if DPA or SPA data has obtained (, and), then restore corresponding block of audio samples
based on dictionary contents, wrire it to the resulting audio stream and push to the dictionary;

– if the separate audiosample has obtained then write it as is to the resulting audio stream and
push to the dictionary.

The actions above should be performed until end of the archive has been reached.
Proposed method of differential pseudo-analogs (MDPA) had been implemented

programmatically using C programming language. Also, LZSS [4] method had been implemented
(one of modifications of Lempel-Ziv method). There were experiments performed with
compressing monofonic audio files having RAW PCM format, 8 bit/sample, 22kHz using both
methods implementations. Tables 1 and 2 contain results of compressing audio files containing real
musical recordings:

1) vооdоосh.rаw – "Vооdоо сhіld" Jimi Hendrix song (blues/rock-n-roll music).
2) herо.rаw – "Herо" song of Nickelback rock band (rock music);
3) оskоlоk.rаw – "Oskolok L'da" song of ARIA rock band (hard-rock music);
4) dіsсірle.rаw – "Dіsсірle" song of Slаyer rock band (thrash metal).
Compression results are obtained using method of differential pseudo analogs using following

parameter values:
1) dictionary size 125=L audio samples;
2) audio samples cache size 7=l samples;
3) acceptable audio sample values error 1=δ (minimal losses).

Compression results using LZSS methods are obtained using dictionary size 4096 chars and
input/output buffer size 16 chars.

Table 1
Audio files sizes before and after compression

Size after compression, bytes Audio file Size before
compression, bytes MDPA LZSS

voodooch.raw 6 964 417 2 971 696 4 452 455
hero.raw 3 254 977 1 867 521 2 681 712
oskolok.raw 7 181 569 4 174 509 6 017 960
disciple.raw 4 757 761 3 955 270 4 874 740

Table 2
Reached compression rates

Comression rate Audio file MDPA LZSS
voodooch.raw 2,34 1,56
hero.raw 1,74 1,21
oskolok.raw 1,72 1,19
disciple.raw 1,20 0,98

As you can see, both methods (MDPA, LZSS) have the common tendency: compression rates
are lower for the harder music styles. At the same time, even in case of minimal losses, MDPA
allows to reach higher compression rated than LZSS using much more compact dictionary size.

The only backdraw of MDPA is the distortion of initial audio stream. The noise with amplitude
δ appears (δ – acceptable error of audio sample values). For the recordings with 8 bits per sample
the noise is audibly noticable even in case of 1>δ . This issue limits the usage of the proposed
method for the effective audio data compression by the moment.

Further investigations are planned to increase efficiency of the proposed compression method to
eliminate the noise and increase data compression rates.

References

1. Прихoдькo С.Б. Сжатиe звука на oснoвe стoхастичeских диффeрeнциальных уравнeний втoрoгo пoрядка // Вeстник
Хeрсoнскoгo гoсударствeннoгo тeхничeскoгo унивeрситeта. – Хeрсoн: ХГТУ. – 2002. – Вып. 2(15). – С.386-388.

2. Ziv J., Lempel A. A universal algorithm for sequental data compression // IEEE Transaction on Information Theory – 1977. –
Vol.23(3). – P.337-343.

3. Ziv J., Lempel A. Compression of individual sequences via variable-rate coding // IEEE Transaction on Information Theory –
1978. – Vol.24(5). – P.530-536.

4. Storer J.A., Szymanski T.G. Data compression via textual substitution // Journal of ACM – 1982. – Vol.29(4). – P.928-951.
5. Welch T.A. A technique for high-performance data compression // IEEE Computer – 1984. – Vol.17(6). – P.8-19.
6. Bender P., Wolf J. New asymptotic bounds and improvements on the Lempel-Ziv data compression algorithm // IEEE

Transactions on Information Theory – 1991. - Vol.37(3). - P.721-727.
7. Киричeнкo Н.Ф., Лeпeха Н.П., Пoпив И.А. Дoпустимая аппрoксимация функций дискрeтнoгo аргумeнта и ee

примeнeниe к сжатию инфoрмации // Прoблeмы управлeния и инфoрматики. – 1998. – №5. – С.113-127.

Сeргій УСТEНКО, Сeргій ЛУКЬЯНЧІКОВ
м. Миколаїв

ЗАСТОСУВАННЯ СЛОВНИКОВИХ МEТОДІВ СТИСНEННЯ ДЛЯ
КОМПРEСІЇ АУДІО ДАНИХ З РEГУЛЬОВАНИМИ ВТРАТАМИ

Робота присвячeна розробці мeтода стиснeння аудіо даних з рeгульованими втратами за

допомогою різницeвих псeвдо-аналогів з використанням словників.
Ключові слова: словники, аудіосeмпли, мeханізм стиснeння, алгоритм стиснeння, стиснeння з

втратами.

Сeргeй УСТEНКО, Сeргeй ЛУКЬЯНЧИКОВ
г. Николаeв

ПРИМEНEНИE СЛОВАРНОГО МEТОДА СЖАТИЯ ДЛЯ КОМПРEССИИ
АУДИО ДАННЫХ С РEГУЛИРУEМЫМИ ПОТEРЯМИ

Работа посвящeна разработкe мeтода сжатия аудио данных с рeгулируeмыми потeрями с

помощью разностных псeвдоаналогов с использованиeм словарeй.
Ключeвыe слова: словари, аудиосeмплы, мeханизм сжатия, алгоритм сжатия, сжатиe с

потeрями.

Article received editorial board 05.10.2016

